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1 The Determinant

In one sentence, the determinant of a matrix is a real number that corre-
sponds to the volume of the unit cube after applying the linear transforma-
tion represented by the matrix. If the matrix flips the unit cube then the
sign is negative. Similar to the script, this section will be less proof based
and I am going to try to provide the intuition behind the properties of the
determinant.

In 2× 2 case, we calculate the determinant as follows:∣∣∣∣a b
c d

∣∣∣∣ := det

[
a b
c d

]
= ad− bc

This becomes obvious when you calculate the area of the image of the unit
square by multiplication with the matrix. You can see the image in the
lecture notes or watch the whole 3Blue1Brown video. We directly move to
the n× n case before we discuss the properties of the determinant.

1.1 Permutations

To calculate the determinant in n × n case, we need to know what the sign
of a permutation means. Here is the formal definiton:
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Definition 6.0.4. Given a permutation σ : {1, . . . , n} → {1, . . . , n} of n
elements, its sign sgn(σ) can be 1 or −1. The sign counts the parity of
the number of pairs of elements that are out of order (sometimes called
inversions) after applying the permutation. In other words,

sgn(σ) ={
1 if |{(i, j) ∈ {1, . . . , n} × {1, . . . , n} | i < j and σ(i) > σ(j)}| is even
-1 if |{(i, j) ∈ {1, . . . , n} × {1, . . . , n} | i < j and σ(i) > σ(j)}| is odd

What does this mean? We better see an example. Let the permutation π be
defined as

π(1) = 2, π(2) = 3, π(3) = 1, π(4) = 4

Now forget about the specific permutation. Since π : {1, 2, 3, 4} 7→ {1, 2, 3, 4}
we list all tuples (i, j) ∈ {1, 2, 3, 4} × {1, 2, 3, 4} such that i < j. These are:

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

↓ apply π to every number you see ↓
(2, 3), (2, 1), (2, 4), (3, 1), (3, 4), (1, 4)

We simply went from (i, j) to (π(i), π(j)). Now count for how many pairs
π(i) > π(j). This is the case for (2, 1) and (3, 1). The number of out-of-order
pairs is 2 which is even. So sgn(π) = 1.

1.2 n× n Case

Definition 6.0.6 Given a square matrix A ∈ Rn×n the determinant det(A)
is defined as

det(A) =
∑
σ∈Πn

sgn(σ)
n∏

i=1

Ai,σ(i)

where Πn is the set of all permutations of n elements.

This definition might seem confusing at first sight. Let’s break it down. If
you write this in java, this is nothing but just two for loops. You add some
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product for each possible permutation of n elements. If you consider the
product for one specific permutation, we have

det(A) = · · ·+ sgn(σ) · A1,σ(1) · A2,σ(2) · · ·An,σ(n) + . . .

This means for a certain permutation σ ∈ Πn you begin from the first row,
get the element on the σ(1)-th column, go to second row, get the element
on the σ(2)-th column etc. and multiply these terms with each other and
the sign of σ. In other words you begin from the first row and traverse the
matrix down to the last row by choosing each time one element per row and
per column. No row or no column is allowed to have 2 selected elements. It
must be exactly 1 per column and per row. What do I mean with this? Here
is an example:


4 6 4 5

3 8 1 6

2 9 2 10

1 2 3 18



4 6 4 5

3 8 1 6

2 9 2 10

1 2 3 18



4 6 4 5

3 8 1 6

2 9 2 10

1 2 3 18



4 6 4 5

3 8 1 6

2 9 2 10

1 2 3 18


sgn(σ1) ·4 ·1 ·10 ·2 sgn(σ2) ·4 ·8 ·10 ·1 sgn(σ3) ·5 ·3 ·2 ·2 sgn(σ4) ·6 ·1 ·2 ·18

The permutations σ1, σ2, σ3, σ4 are some arbitrary examples of permutations
in Π4 and the products under each matrix is the term sgn(σ)

∏4
i=1 Ai,σ(i). If

you have all 24 possible permutations of 4 elements and add the correspond-
ing terms sgn(σ)

∏4
i=1Ai,σ(i) together, you will have the determinant of this

matrix.

As you might have already realized, it is some burdensome calculation that
we have here. For any n×n matrix you have to consider all n! permutations!
This is too much, even for a computer when n gets large. Luckily we have
other ways of calculating the determinant.

1.3 The Cofactor Expansion

The main idea is to reduce the calculation of the determinant of a larger
matrix to the calculation of a bunch of 2× 2 matrix determinants. The 3× 3
case is the usual example to give the intuition.
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Example 6.0.14. For 3×3 matrices there are 3! = 6 permutations, so there
will be 6 terms. For A a 3×3 matrix, we can write its determinant as (where
an empty entry corresponds to a zero entry)

det(A) =

∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣
=

∣∣∣∣∣∣
A11

A22

A33

∣∣∣∣∣∣+
∣∣∣∣∣∣
A11

A23

A32

∣∣∣∣∣∣+
∣∣∣∣∣∣

A12

A21

A33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
A12

A23

A31

∣∣∣∣∣∣+
∣∣∣∣∣∣

A13

A21

A32

∣∣∣∣∣∣+
∣∣∣∣∣∣

A13

A22

A31

∣∣∣∣∣∣
=A11A22A33 − A11A23A32 − A12A21A33 + A12A23A31 + A13A21A32 − A13A22A31.

=A11(A22A33 − A23A32)− A12(A21A33 − A23A31) + A13(A21A32 − A22A31)

=A11

∣∣∣∣A22 A23

A32 A33

∣∣∣∣− A12

∣∣∣∣A21 A23

A31 A33

∣∣∣∣+ A13

∣∣∣∣A21 A22

A31 A32

∣∣∣∣ .
In general, these terms in the last line are called the co-factors of A. Here is
the formal definition:

Definition 6.0.15 Given A ∈ Rn×n, for each 1 ≤ i, j ≤ n let Aij denote the
(n− 1)× (n− 1) matrix obtained by removing row i and column j from A.
Then we define the co-factors of A as

Cij = (−1)i+jdet(Aij)

And if you multiply each co-factor with the corresponding matrix entry Aij

and take the sum over these products, you have the determinant of the
matrix. This is the Proposition 6.0.16. Note that it corresponds to the
last line in the calculation above for 3× 3 case.
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Proposition 6.0.16. Let A ∈ Rn×n for any 1 ≤ i ≤ n,

det(A) =
n∑

j=1

AijCij

In words, this proposition tells you that you can choose a row i arbitrarily,
then go over the elements of that row to calculate the co-factors. Let’s see
an example:

Let A =


2 2 4 5
3 1 9 0
0 0 2 0
0 2 3 1


It makes sense to choose the row with the most 0’s so that we have less work.
So choose i = 3. Then we have

det(A) =

∣∣∣∣∣∣∣∣
2 2 4 5
3 1 9 0
0 0 2 0
0 2 3 1

∣∣∣∣∣∣∣∣ = 0 · C31 + 0 · C32 + 2 · C33 + 0 · C34

As you can see, the only relevant term is 2 · C33 since other terms are all 0.

det(A) = 2 · C33 = 2 · (−1)3+3 ·

∣∣∣∣∣∣
2 2 5
3 1 0
0 2 1

∣∣∣∣∣∣
Now we can apply co-factor expansion once more to calculate the determinant
of the remaining 3× 3 matrix. If we choose our i = 2 we can write:

det(A) = 2 ·C33 = 2 ·(−1)3+3 ·

∣∣∣∣∣∣
2 2 5
3 1 0
0 2 1

∣∣∣∣∣∣ = 2 ·(−1)3+3 ·(3 ·C21+1 ·C22+0 ·C23)

These co-factors require us to calculate 2× 2 determinants which we can do.
Remember ad− bc. Note that 0 · C23 = 0 anyways so we have:

det(A) =2 · (−1)3,3 ·
(
3 · (−1)2+1 ·

∣∣∣∣2 5
2 1

∣∣∣∣+ 1 · (−1)2+2 ·
∣∣∣∣2 5
0 1

∣∣∣∣)
=2 · 1 · (3 · (−1) · (2 · 1− 2 · 5) + 1 · 1 · (2 · 1− 0 · 5))
=52
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Note that at any given step we could have chosen any row. We chose the 3rd
row the first time and the 2nd row the second time because then we have
relatively less computations. However, doing this for any other row would
work and yield the same result. Try it!

1.4 Properties of the Determinant

Most properties of the determinant are intuitive when you think of it as the
volume of the unit cube under the associated linear transformation.1

Proposition 6.0.12 Given matrices A,B ∈ Rn×n we have

det(AB) = det(A)det(B)

Intuition: If you multiply the unit cube with a matrix A and then a matrix
B, it is equally inflated compared to the case where you multiply A and B
first with each other and then apply the product transformation to the unite
cube.

Proposition 6.0.11. A matrix A ∈ Rn×n is invertible if and only if

det(A) ̸= 0

Intuition: Again think in terms of the volume of the unit cube. When
is the volume 0? The volume of a 3 dimensional shape is 0, if in one of
the dimensions the height is 0. This means our ”cube” determined by the
columns of A just exists in 2 dimensions. 3 vectors in 2 dimensions must be
linearly dependent.

1The following intuitions are neither guaranteed to be correct nor generalizable to
multiple dimensions. They are there to help you imagine the statements of the propositions
in 3 dimensions but if they confuse you more than they help you, simply ignore them.
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Proposition 6.0.13 Given a matrix A ∈ Rn×n such that det(A) ̸= 0, then
A is invertible and

det(A−1) =
1

det(A)

Intuition: If A shrinks the unit cube, then A−1 inflates it back, if A inflates
the unit cube, then A−1 shrinks it back. So if A multiplies every edge of the
unit cube by 5 thereby inflating the volume from 1 up to 125, then the inverse
must divide every edge by 5 such that the volume is 1 again. The matrix A
that multiplies every edge of the unit cube -and hence the whole space- by 5
is the matrix 5 · I.

Theorem 6.0.9. Given a matrix A ∈ Rn×n we have

det(A⊤) = det(A)

Intuition: This lemma has its proof in the lecture notes which argue over the
permutations. Remember how we associated the determinant with ”travers-
ing the matrix beginning from the first row and going until the last row in
all possible ways”? This lemma implies that you can also do the same thing
with columns. So you can start from the leftmost column and traverse the
matrix until you reach the rightmost column or vice versa. The sum of prod-
ucts will still be the same. This lemma has one more important implication:
You can expand through columns when you use the co-factor ex-
pansion! So instead of choosing one row and going through its elements
according to Proposition 6.0.16. You can choose a column and do the
same thing for the elements of the column.

We go on by introducing some special matrices with special determinants.
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Proposition 6.0.7. Given a permutation matrix P ∈ Rn×n corresponding
to a permutation σ, the det(P) = sgn(P). It is also possible to write sgn(P ).

Proposition 6.0.102 If Q ∈ Rn×n is an orthogonal matrix then
det(Q) = 1, or det(Q) = -1.

Proposition 6.0.8. Given a triangular (either upper or lower3) matrix
T ∈ Rn×n we have

det(T ) =
n∏

k=1

Tkk

in particular, det(I) = 1.

For the triangular matrices, try to find a traversal as we did above on page 3,
that do not step to the side of the diagonal where all entries are 0. Because if
you step on some 0 entry then the product corresponding your permutation
becomes 0. You will realize your only option is going along the diagonal. In
other words, the only permutation that contributes to the determinant is the
one that chooses the diagonal entries.

Proposition 6.0.17. (extended) Given A ∈ Rn×n with det(A) ̸= 0 we
have

A−1 =
1

det(A)
C⊤

where C is the n× n matrix with the co-factors of A as entries. Which can
be rewritten as

AC⊤ = det(A)I

In 2 dimensions for A =

[
a b
c d

]
this corresponds to

A−1 =
1

ad− bc

[
d −c
−b a

]

3Proof in the lecture notes.
3Remember, diagonal matrices are upper and lower triangular at the same time. So

the determinant of a diagonal matrix is the product of all diagonal elements.
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1.5 Cramer’s Rule

Using the determinant, we can also write a formula for the solution of the
linear system Ax = b. This is what we call Cramer’s Rule. You can -and
you should- read the section 6.0.3. OR Proposition 6.0.19 in lecture notes.

As you might encounter on several pages in the lecture notes, the formulas
using the determinant repeatedly -like the inverse formula for n×n matrices
above or Cramer’s rule- are considered as a high workload in computational
sense and therefore not preferred in practice.

1.6 PALU, Gauss and the Determinant

Remember the PA = LU decomposition which is the product of Gaussian
Elimination. We have

• det(P ) = sgn(P ), since P is a permuation matrix.

• det(U) =
∏n

i=1 Uii, in words determinant of U is equal to the product
of the diagonal entries since it is an upper triangular matrix.

• det(L) = 1, since L is a lower triangular matrix that has only 1′s on
its diagonal per definition.

We have
PA = LU

det(PA) = det(LU)

det(P )det(A) = det(L)det(U)

det(A) =
1

sgn(P )
· 1 · det(U)

det(A) = sgn(P )det(U)

The last step holds because we know the sign of a permutation matrix is
either 1 or −1 so we can say 1

sgn(P )
= sgn(P ).

To understand better how Gaussian Elimination can be associated with the
determinant, we have 2 important propositions.
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Proposition 6.0.21. If A is an n × n matrix and P is a permutation that
swaps two elements, meaning that PA corresponds to swapping two rows of
A then det(PA) = −det(A).

Proposition 6.0.22. The determinant is linear in each row (or each col-
umn). In other words, for any a0,a1,a2, . . . ,an ∈ Rn and α0, α1 ∈ R we
have

∣∣∣∣∣∣∣∣∣
α0a

⊤
0 + α1a

⊤
1

a⊤2
...
a⊤n

∣∣∣∣∣∣∣∣∣ = α0

∣∣∣∣∣∣∣∣∣
a⊤0
a⊤2
...
a⊤n

∣∣∣∣∣∣∣∣∣+ α1

∣∣∣∣∣∣∣∣∣
a⊤1
a⊤2
...
a⊤n

∣∣∣∣∣∣∣∣∣
and∣∣∣∣∣∣

| | |
α0a0 + α1a1 a2 . . . an

| | |

∣∣∣∣∣∣ = α0

∣∣∣∣∣∣
| | |
a0 a2 . . . an
| | |

∣∣∣∣∣∣+ α1

∣∣∣∣∣∣
| | |
a1 a2 . . . an
| | |

∣∣∣∣∣∣

This property is useful to prove the following fact:

(Not in lecture notes) For any A ∈ Rn×n we have det(k · A) = kn · det(A).

2 Complex Numbers

In lecture notes you have the fundamental tools to work with complex num-
bers. Familiarizing yourself with these operations is not only important for
linear algebra but also for your future courses. Here I am going to mention
a part of this section.
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Theorem 7.0.3. (Fundamental Theorem of Algebra) Any degree n non-
constant polynomial P (z) = αnz

n + αn−1z
n−1 + · · · + α1z + α0 with an ̸= 0

has a zero λ ∈ C such that P (λ) = 0.

Corollary 7.0.4. Any degree n non-constant (n ≥ 1) polynomial P (z) =
αnz

n +αn−1z
n−1 + · · ·+α1z+α0 (with αn ̸= 0) has n zeros: λ1, . . . , λn ∈ C,

perhaps with repetitions, such that

P (z) = αn(z − λ1)(z − λ2) · · · (z − λn).

The number of times λ ∈ C appears in this expansion is called the algebraic
multiplicity of the zero.

The fundamental theorem of algebra will later help us when we calculate
the eigenvalues of a matrix and it will be the certificate of the fact that all
(square) matrices have an eigenvalue.

In Cn we usually define linear independence, span and similar concepts just
as in Rn. An important difference is the transpose of a matrix. We usually
speak of hermitian transpose or the conjugate transpose of a matrix. The
notation is usually A∗, sometimes AH . You take the complex conjugate of
each entry and then transpose the matrix as usual.

A∗ = Ā⊤

Then we have

∥v∥2 = v∗v = v̄⊤v =
n∑

i=1

v̄ivi =
n∑

i=1

|vi|2

where v̄i is the complex conjugate of vi.

A useful trick to prove some given x ∈ C is in R, is to show that the complex
conjugate of x is equal to itself as in

x = x̄ =⇒ x ∈ R.

This fact is is not a lemma from the notes but it is used in the proof of
Proposition 7.3.7. It is just a cool trick, good to know.
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3 Hints

1. Solved in class. Select a column / row and iterate through it using
proposition 6.0.16. You can also select a column because det(A) =
det(A⊤). Go for the one with most 0’s and hence with least work. For
b see section 6.0.4.

2. Use the definition of the determinant over permutations. If your per-
mutation touches a 0 entry then that permutation does not contribute
to the determinant. What are all the permutations that avoid the 0
entries, i.e. that only choose entries that are non zero?

3. No hints.

4. Write E as a linear combination of A,B,C, and D. Remember, the de-
terminant is linear in each row / column. → Prop 6.0.22.

5. To show that λ and v ̸= 0 are an eigenvalue-eigenvector pair associated
with a matrix M, all you have to show is Mv = λv. Do this for the
matrix M + cI. For b you can guess the two eigenvalues and verify by
direct computation.

6. Write pj =
1
2
(pj−1 + pj+1) as pj − 1

2
(pj−1 + pj+1) = 0 and formulate

equations (3) and (4) similarly. Does it look more like a linear system
of equations now? You should also include the vectors cs into your

matrix. You can do so by defining a big matrix S =

 A

B

 where A

represents the LSE for p′s and B represents the LSE for c′s. B will
look like a permutation matrix but you only choose some elements so
its shorter.

mkilic
♠
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